Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/242279
Type: Artigo de periódico
Title: The Influence Of The Fluidization Velocities On Products Yield And Catalyst Residence Time In Industrial Risers
Author: Alvarez-Castro
H. C.; Matos
E. M.; Mori
M.; Martignoni
W.; Ocone
R.
Abstract: The hydrodynamic characteristic of the industrial riser used in the fluid catalytic cracking (FCC) process has been simulated. A gas-solid flow model was developed which describes a 3D industrial set-up. By combining the hydrodynamics with a reaction model the yields of the different product families were obtained with good precision. To represent the kinetic behavior, a twelve-lump model with catalyst deactivation was adopted to represent the kinetic behavior. A tracer technique for catalyst residence time, corresponding to different fluidization velocities, was also considered. The Eulerian-Eulerian approach was adopted and solved by ANSYS CFX 14.0. The results show predictions for fluidization velocities and residence time which should be adopted to get better product yields in the industrial process. The results are compared with data taken in an industrial plant. The model furnishes valuable information on the impact of the riser hydrodynamics on the product quality. (C) 2015 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Subject: Heavy Oil Riser
Gas-solid Flow
Cracking Reaction
Simulation
Reactors
Hydrodynamics
Model
Country: AMSTERDAM
Editor: ELSEVIER SCIENCE BV
Citation: The Influence Of The Fluidization Velocities On Products Yield And Catalyst Residence Time In Industrial Risers. Elsevier Science Bv, v. 26, p. 836-847 MAY-2015.
Rights: embargo
Identifier DOI: 10.1016/j.apt.2015.02.009
Address: http://www.sciencedirect.com/science/article/pii/S0921883115000400
Date Issue: 2015
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
wos_000356240900018.pdf2.55 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.