Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/243243
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbn978-0-7354-1280-4pt
dc.typeArtigo de eventopt_BR
dc.titleFrom Almost Gaussian To Gaussianpt_BR
dc.contributor.authorCostapt_BR
dc.contributor.authorMax H. M.; Rioulpt_BR
dc.contributor.authorOlivierpt_BR
unicamp.author.emailmax@fee.unicamp.br; olivier.rioul@telecom-paristech.frpt_BR
unicamp.author[Costa, Max H. M.] Univ Estadual Campinas, Campinas, SP, Brazilpt_BR
unicamp.author.external[Rioul, Olivier] Inst MinesTelecom, Telecom ParisTech, CNRS, LTCI, Paris, Francept
dc.subjectInterference Channelpt_BR
dc.subjectCapacitypt_BR
dc.description.abstractWe consider lower and upper bounds on the difference of differential entropies of a Gaussian random vector and an approximately Gaussian random vector after they are "smoothed" by an arbitrarily distributed random vector of finite power. These bounds are important to establish the optimality of the corner points in the capacity region of Gaussian interference channels. A problematic issue in a previous attempt to establish these bounds was detected in 2004 and the mentioned corner points have since been dubbed "the missing corner points". The importance of the given bounds comes from the fact that they induce Fano-type inequalities for the Gaussian interference channel. Usual Fano inequalities are based on a communication requirement. In this case, the new inequalities are derived from a non-disturbance constraint. The upper bound on the difference of differential entropies is established by the data processing inequality (DPI). For the lower bound, we do not have a complete proof, but we present an argument based on continuity and the DPI.en
dc.relation.ispartofBAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014)pt_BR
dc.publisher.countryMELVILLEpt_BR
dc.publisherAMER INST PHYSICSpt_BR
dc.date.issued2015pt_BR
dc.identifier.citationFrom Almost Gaussian To Gaussian. Amer Inst Physics, v. 1641, p. 67-73 2015.pt_BR
dc.language.isoenpt_BR
dc.description.volume1641pt_BR
dc.description.firstpage67pt_BR
dc.description.lastpage73pt_BR
dc.rightsembargopt_BR
dc.sourceWOSpt_BR
dc.identifier.issn0094-243Xpt_BR
dc.identifier.wosidWOS:000354648400005pt_BR
dc.identifier.doi10.1063/1.4905964pt_BR
dc.identifier.urlhttps://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjBmfWq0cPMAhWME5AKHaPTA2QQFgggMAA&url=http%3A%2F%2Fperso.telecom-paristech.fr%2F~rioul%2Fpublis%2F201409costarioul.pdf&usg=AFQjCNF26pvcxbrYpegvwXQLLqFojL2OQApt_BR
dc.date.available2016-06-07T13:22:42Z-
dc.date.accessioned2016-06-07T13:22:42Z-
dc.description.provenanceMade available in DSpace on 2016-06-07T13:22:42Z (GMT). No. of bitstreams: 1 wos_000354648400005.pdf: 155739 bytes, checksum: 4ec02f99eacf2e049dd9cd1583fdb82e (MD5) Previous issue date: 2015en
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/243243-
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
wos_000354648400005.pdf152.09 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.