Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/331613
Type: DISSERTAÇÃO DIGITAL
Degree Level: Mestrado
Title: Continuação de campos Gutierrez-Sotomayor
Title Alternative: Continuation of Gutierrez-Sotomayor vector fields
Author: Zigart, Murilo André de Jesus, 1993-
Advisor: Rezende, Ketty Abaroa de, 1959-
Abstract: Resumo: Apresentamos as variedades GS (variedades 2-dimensionais localmente difeomorfas a uma ou mais das seguintes vizinhanças: regular, cone, guarda-chuva de Whitney, ponto duplo e ponto triplo), introduzidas por Gutierrez e Sotomayor. Em seguida, consideramos campos de vetores contínuos no espaço Euclidiano tridimensional, que restritos às vizinhanças das singularidades GS são tangentes. E com o auxílio das cartas locais, obtemos uma representação matricial destes campos para cada um dos tipos de singularidade GS, chamadas de formas algébricas locais. Exploramos a transição entre essas formas algébricas, variando os parâmetros de suas entradas através de famílias de campos a 1-parâmetro tendo uma das vizinhanças das singularidades GS como subvariedade invariante, processo que denominamos de continuação algébrica. Posteriormente, analisamos os efeitos das continuações no aspecto dinâmico-topológico dos campos numa vizinhança de cada singularidade GS, descrevendo as mudanças observadas na natureza das singularidades, bem como a relação entre sua hiperbolicidade e a escolha das famílias de campos a 1-parâmetro. Por fim, introduzimos os blocos GS para definir o seu Índice de Conley, explicitando-o de acordo com os parâmetros. E finalmente, apresentamos uma aplicação nos espaços de configuração de braços de robô

Abstract: In this dissertation, GS manifolds (2-dimensional manifolds locally diffeomorphic to one or more of the following neighbourhoods: regular, cone, Whitney's umbrella, double crossing and triple crossing) introduced by Gutierrez and Sotomayor are presented. We consider vector fields in the tridimensional Euclidian space that are tangent vector fields when restricted to the neighbourhoods of GS singularities. Using local charts we obtain a matrix representation of these vector fields for each GS singularity type, which we refer to as the local algebraic form. We explore the transition between algebraic forms that maintain the neighbourhood of a GS singularity invariant. We refer to this process as algebraic continuation. Subsequently, we analyze the dynamical topological effect on the vector fields in a neighbourhood of each GS singularity type, describing the changes in the nature of the singularity in a 1-parameter family of vector fields as it goes through parameter values. We also study the relation between algebraic continuations of a family of vector fields and the hiperbolicity of the singularity. The GS basic blocks are introduced in order to define the Conley Index with respect to the parameters. Lastly, we present an application in the configuration space of a robot arm
Subject: Variedades topológicas
Campos vetoriais
Singularidades (Matemática)
Dinâmica topológica
Editor: [s.n.]
Citation: ZIGART, Murilo André de Jesus. Continuação de campos Gutierrez-Sotomayor. 2017. 1 recurso online ( 101 p.). Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica, Campinas, SP. Disponível em: <http://www.repositorio.unicamp.br/handle/REPOSIP/331613>. Acesso em: 1 set. 2018.
Date Issue: 2017
Appears in Collections:IMECC - Tese e Dissertação

Files in This Item:
File SizeFormat 
Zigart_MuriloAndreDeJesus_M.pdf5.59 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.