Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature
Author: Rivera, EC
Costa, AC
Atala, DIP
Maugeri, F
Maria, RWM
Maciel, R
Abstract: Optimization techniques are evaluated to estimate the kinetic model parameters of batch fermentation process for ethanol production using Saccharomyces cerevisiae. Batch experimental observations at five temperatures (28, 31, 34, 37 and 40 degrees C) are used to formulate the parameter estimation problem. The potential of Quasi-Newton (QN) and Real-Coded Genetic Algorithm (RGA) to solve the estimation problem is considered to find out the optimal solution. Subsequently, the optimized parameters (mu(max) X-max, P-max, Y-x and Y-px) were characterized by correlation functions assuming temperature dependence. The kinetic models optimized by QN and RGA describe satisfactorily the batch fermentation process as demonstrated by the experimental results. (c) 2006 Elsevier Ltd. All rights reserved.
Subject: ethanol fermentation
batch fermentation
parameter estimation
temperature effect
genetic algorithm
quasi-Newton algorithm
Country: Inglaterra
Editor: Elsevier Sci Ltd
Citation: Process Biochemistry. Elsevier Sci Ltd, v. 41, n. 7, n. 1682, n. 1687, 2006.
Rights: fechado
Identifier DOI: 10.1016/j.procbio.2006.02.009
Date Issue: 2006
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000238237500032.pdf163.63 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.