Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/81457
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUniversidade Estadual de Campinaspt_BR
dc.typeArtigo de periódicopt_BR
dc.titlePositive solutions for nonlinear elliptic equations with fast increasing weightspt_BR
dc.contributor.authorCatrina, Fpt_BR
dc.contributor.authorFurtado, Mpt_BR
dc.contributor.authorMontenegro, Mpt_BR
unicamp.author.emailcatrinaf@stjohns.edupt_BR
unicamp.author.emailmfurtado@unb.brpt_BR
unicamp.author.emailmsm@ime.unicamp.brpt_BR
unicamp.authorCatrina, Florin St Johns Univ, Dept Math & Comp Sci, Jamaica, NY 11439 USApt_BR
unicamp.authorFurtado, Marcelo Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazilpt_BR
unicamp.authorMontenegro, Marcelo Univ Estadual Campinas, Dept Matemat, IMECC, BR-13083970 Campinas, SP, Brazilpt_BR
dc.subject.wosCritical Sobolev Exponentspt_BR
dc.subject.wosBrezis-nirenberg Problempt_BR
dc.subject.wosRadial Solutionspt_BR
dc.subject.wosConstantspt_BR
dc.subject.wosS-3pt_BR
dc.description.abstractWe find positive rapidly decaying solutions for the equation - div(K(x)del u) = K(x)u(2)*(-1) + lambda K(x)vertical bar x vertical bar(alpha-2)u in R-N, where N >= 3, the nonlinearity is given by the critical Sobolev exponent 2* = 2N/(N - 2), the weight is K(x) = exp(1/4 vertical bar x vertical bar(alpha)), alpha >= 2 and lambda is a parameter.pt
dc.description.noteo TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.pt
dc.relation.ispartofProceedings Of The Royal Society Of Edinburgh Section A-mathematicspt_BR
dc.relation.ispartofabbreviationProc. R. Soc. Edinb. Sect. A-Math.pt_BR
dc.publisher.cityEdinburghpt_BR
dc.publisher.countryEscóciapt_BR
dc.publisherRoyal Soc Edinburghpt_BR
dc.date.issued2007pt_BR
dc.identifier.citationProceedings Of The Royal Society Of Edinburgh Section A-mathematics. Royal Soc Edinburgh, v. 137, n. 1157, n. 1178, 2007.pt_BR
dc.language.isoenpt_BR
dc.description.volume137pt_BR
dc.description.issuepart6pt_BR
dc.description.firstpage1157pt_BR
dc.description.lastpage1178pt_BR
dc.rightsembargopt_BR
dc.sourceWeb of Sciencept_BR
dc.identifier.issn0308-2105pt_BR
dc.identifier.wosidWOS:000252737000003pt_BR
dc.date.available2014-11-13T22:35:43Z
dc.date.available2015-11-26T17:11:57Z-
dc.date.accessioned2014-11-13T22:35:43Z
dc.date.accessioned2015-11-26T17:11:57Z-
dc.description.provenanceMade available in DSpace on 2014-11-13T22:35:43Z (GMT). No. of bitstreams: 1 WOS000252737000003.pdf: 221914 bytes, checksum: ce7a15086a8f1d5960273a0d0fa09882 (MD5) Previous issue date: 2007en
dc.description.provenanceMade available in DSpace on 2015-11-26T17:11:57Z (GMT). No. of bitstreams: 2 WOS000252737000003.pdf: 221914 bytes, checksum: ce7a15086a8f1d5960273a0d0fa09882 (MD5) WOS000252737000003.pdf.txt: 35412 bytes, checksum: eb64d22b83b6b1e449f63558743618a1 (MD5) Previous issue date: 2007en
dc.identifier.urihttp://www.repositorio.unicamp.br/jspui/handle/REPOSIP/81457pt_BR
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/81457
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/81457-
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
WOS000252737000003.pdf216.71 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.