Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleField Emission Properties Of The Graphenated Carbon Nanotube Electrodept_BR
dc.contributor.authorZanin H.pt_BR
dc.contributor.authorCeragioli H.J.pt_BR
dc.contributor.authorPeterlevitz A.C.pt_BR
dc.contributor.authorBaranauskas V.pt_BR
dc.contributor.authorMarciano F.R.pt_BR
dc.contributor.authorLobo A.O.pt_BR
unicamp.authorZanin, H., School of Chemistry, University of BristolBristol, United Kingdom, Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400Campinas, São Paulo, Brazilpt_BR
unicamp.authorCeragioli, H.J., Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400Campinas, São Paulo, Brazilpt_BR
unicamp.authorPeterlevitz, A.C., Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400Campinas, São Paulo, Brazilpt_BR
unicamp.authorBaranauskas, V., Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400Campinas, São Paulo, Brazilpt_BR, F.R., Laboratory of Biomedical Nanotechnology, Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911Sao Jose dos Campos, SP, Brazilpt, A.O., Laboratory of Biomedical Nanotechnology, Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911Sao Jose dos Campos, SP, Brazilpt
dc.description.abstractReduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.en
dc.relation.ispartofApplied Surface Sciencept_BR
dc.identifier.citationApplied Surface Science. Elsevier, v. 324, n. , p. 174 - 178, 2015.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-25T12:50:59Z (GMT). No. of bitstreams: 1 2-s2.0-84920673427.pdf: 1622662 bytes, checksum: 88afbd39ca652dab677bc31a6314791f (MD5) Previous issue date: 2015en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:58:04Z (GMT). No. of bitstreams: 2 2-s2.0-84920673427.pdf: 1622662 bytes, checksum: 88afbd39ca652dab677bc31a6314791f (MD5) 2-s2.0-84920673427.pdf.txt: 27715 bytes, checksum: 4c7df0d0ebf5a4de071672bebe5c84cb (MD5) Previous issue date: 2015en
dc.description.referenceGroning, O., Kuttel, O.M., Emmenegger, C., Groning, P., Schlapbach, L., Field emission properties of carbon nanotubes (2000) J. Vac. Sci. Technol. B, 18 (2), pp. 665-678pt_BR
dc.description.referenceGetty, S.A., Auciello, O., Sumant, A.V., Wang, X., Glavin, D.P., Mahaffy, P.R., (2010) Characterization of Nitrogen-Incorporated Ultrananocrystalline Diamond As A Robust Cold Cathode Material, , Conference on Micro- and Nanotechnology Sensors, Systems, and Applications II, Orlando, FLpt_BR
dc.description.referenceCui, J.B., Ristein, J., Ley, L., Low-threshold electron emission from diamond (1999) Phys. Rev. B, 60 (23), pp. 16135-16142pt_BR
dc.description.referenceChatterjee, V., Harniman, R., May, P.W., Barhai, P.K., Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy (2014) Appl. Phys. Lett., 104 (17)pt_BR
dc.description.referenceMilne, W.I., Teo, K.B.K., Minoux, E., Groening, O., Gangloff, L., Hudanski, L., Schnell, J.P., Amaratunga, G.A.J., Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers (2006) J. Vac. Sci. Technol. B, 24 (1), pp. 345-348pt_BR
dc.description.referenceOrlanducci, S., Guglielmotti, V., Cianchetta, I., Sessa, V., Tamburri, E., Toschi, F., Terranova, M.L., Rossi, M., One-step growth and shaping by a dual-plasma reactor of diamond nanocones arrays for the assembling of stable cold cathodes (2012) Nanosci. Nanotechnol. Lett., 4 (3), pp. 338-343pt_BR
dc.description.referenceZanin, H., May, P.W., Hamanaka, M.H.M.O., Corat, E.J., Field emission from hybrid diamond-like carbon and carbon nanotube composite structures (2013) ACS Appl. Mater. Interfaces, 5 (23), pp. 12238-12243pt_BR
dc.description.referenceXiao, X., Auciello, O., Cui, H., Lowndes, D.H., Merkulov, V.L., Carlisle, J., Synthesis and field emission properties of hybrid structures of ultrananocrystalline diamond and vertically aligned carbon nanofibers (2006) Diamond Relat. Mater., 15 (23), pp. 244-247pt_BR
dc.description.referenceZou, Y., May, P.W., Vieira, S.M.C., Fox, N.A., Field emission from diamond-coated multiwalled carbon nanotube "teepee" structures (2012) J. Appl. Phys., 112 (4)pt_BR
dc.description.referenceChen, G., Shin, D.H., Kim, S., Roth, S., Lee, C.J., Improved field emission stability of thin multiwalled carbon nanotube emitters (2010) Nanotechnology, 21 (1)pt_BR
dc.description.referencePandey, A., Prasad, A., Moscatello, J.P., Engelhard, M., Wang, C., Yap, Y.K., Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds (2013) ACS Nano, 7 (1), pp. 117-125pt_BR
dc.description.referenceHollanda, L.M., Lobo, A.O., Lancellotti, M., Berni, E., Corat, E.J., Zanin, H., Graphene and carbon nanotube nanocomposite for gene transfection (2014) Mater. Sci. Eng. C: Mater. Biol. Appl., 39, pp. 288-298pt_BR
dc.description.referenceJiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Narrow graphene nanoribbons from carbon nanotubes (2009) Nature, 458, pp. 877-880pt_BR
dc.description.referenceGeim, A.K., Novoselov, K.S., The rise of graphene (2007) Nat. Mater., 6 (3), pp. 183-191pt_BR
dc.description.referenceGokus, T., Nair, R.R., Bonetti, A., Boehmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Hartschuh, A., Making graphene luminescent by oxygen plasma treatment (2009) ACS Nano, 3 (12), pp. 3963-3968pt_BR
dc.description.referenceEda, G., Unalan, H.E., Rupesinghe, N., Amaratunga, G.A.J., Chhowalla, M., Field emission from graphene based composite thin films (2008) Appl. Phys. Lett., 93 (23)pt_BR
dc.description.referenceMalesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M.P., Volodin, A., Van Haesendonck, C., Field emission from vertically aligned few-layer graphene (2008) J. Appl. Phys., 104 (8)pt_BR
dc.description.referenceQian, M., Feng, T., Ding, H., Lin, L., Li, H., Chen, Y., Sun, Z., Electron field emission from screen-printed graphene films (2009) Nanotechnology, 20 (42)pt_BR
dc.description.referenceHuang, Y., Wang, W., She, J., Li, Z., Deng, S., Correlation between carbon-oxygen atomic ratio and field emission performance of few-layer reduced graphite oxide (2012) Carbon, 50 (7), pp. 2657-2665pt_BR
dc.description.referenceKung, S.C., Hwang, K.C., Lin, I.N., Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes (2002) Appl. Phys. Lett., 80 (25), pp. 4819-4821pt_BR
dc.description.referenceMathur, A., Roy, S.S., Hazra, K.S., Wadhwa, S., Ray, S.C., Mitra, S.K., Misra, D.S., McLaughlin, J.A., Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes (2012) Mater. Chem. Phys., 134 (1), pp. 425-429pt_BR
dc.description.referenceKurt, R., Klinke, C., Bonard, J.M., Kern, K., Karimi, A., Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD (2001) Carbon, 39 (14), pp. 2163-2172pt_BR
dc.description.referenceParker, C.B., Raut, A.S., Brown, B., Stoner, B.R., Glass, J.T., Three-dimensional arrays of graphenated carbon nanotubes (2012) J. Mater. Res., 27 (7), pp. 1046-1053pt_BR
dc.description.referenceZanin, H., Margraf-Ferreira, A., Da Silva, N.S., Marciano, F.R., Corat, E.J., Lobo, A.O., Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease (2014) Mater. Sci. Eng. C: Mater. Biol. Appl., 41, pp. 65-69pt_BR
dc.description.referenceZanin, H., May, P.W., Lobo, A.O., Saito, E., Machado, J.P.B., Martins, G., Trava-Airoldi, V.J., Corat, E.J., Effect of multi-walled carbon nanotubes incorporation on the structure, optical and electrochemical properties of diamond-like carbon thin films (2014) J. Electrochem. Soc., 161 (5), pp. H290-H295pt_BR
dc.description.referenceTsukada, J., Zanin, H., Barbosa, L.C.A., Da Silva, G.A., Ceragioli, H.J., Peterlevitz, A.C., Teofilo, R.F., Baranauskas, V., Electro-deposition of carbon structures at mid voltage and room temperature using ethanol/aqueous solutions (2012) J. Electrochem. Soc., 159 (3), pp. D159-D161pt_BR
dc.description.referenceZanin, H., Saito, E., Ceragioli, H.J., Baranauskas, V., Corat, E.J., Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices (2014) Mater. Res. Bull., 49 (48), pp. 7-493pt_BR
dc.description.referenceAntunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44 (11), pp. 2202-2211pt_BR
dc.description.referenceGrinet, M.A.V.M., Zanin, H., Campos Granata, A.E., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds (2014) J. Mater. Chem. B, 2 (9), pp. 1196-1204pt_BR
dc.description.referenceKundu, S., Nagaiah, T.C., Xia, W., Wang, Y., Van Dommele, S., Bitter, J.H., Santa, M., Muhlerf, M., Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction (2009) J. Phys. Chem. C, 113 (32), pp. 14302-14310pt_BR
dc.description.referenceZanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications (2013) J. Mater. Chem. B, 1 (38), pp. 4947-4955pt_BR
dc.description.referenceLiu, J., Zeng, B., Wang, X., Wang, W., Shi, H., One-step growth of vertical graphene sheets on carbon nanotubes and their field emission properties (2013) Appl. Phys. Lett., 103 (5)pt_BR
dc.description.referenceChen, G., Futaba, D.N., Kimura, H., Sakurai, S., Yumura, M., Hata, K., Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities (2013) ACS Nano, 7 (11), pp. 10218-10224pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84920673427.pdf1.58 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.