Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/85759
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.typeArtigo de periódicopt_BR
dc.titleCarbon Nanoparticles For Gene Transfection In Eukaryotic Cell Linespt_BR
dc.contributor.authorZanin H.pt_BR
dc.contributor.authorHollanda L.M.pt_BR
dc.contributor.authorCeragioli H.J.pt_BR
dc.contributor.authorFerreira M.S.pt_BR
dc.contributor.authorMachado D.pt_BR
dc.contributor.authorLancellotti M.pt_BR
dc.contributor.authorCatharino R.R.pt_BR
dc.contributor.authorBaranauskas V.pt_BR
dc.contributor.authorLobo A.O.pt_BR
unicamp.authorZanin, H., Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazilpt_BR
unicamp.authorCeragioli, H.J., Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazilpt_BR
unicamp.authorFerreira, M.S., Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, UNICAMP, Rua Cinco de Junho, 350, Campinas, São Paulo CEP 13083-877, Brazilpt_BR
unicamp.authorCatharino, R.R., Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, UNICAMP, Rua Cinco de Junho, 350, Campinas, São Paulo CEP 13083-877, Brazilpt_BR
unicamp.authorBaranauskas, V., Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazilpt_BR
unicamp.author.externalHollanda, L.M., Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazilpt
unicamp.author.externalMachado, D., Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazilpt
unicamp.author.externalLancellotti, M., Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazilpt
unicamp.author.externalLobo, A.O., Laboratory of Biomedical Nanotechnology (NANOBIO), Universidade Do Vale Do Paraiba (UNIVAP), Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, SP, Brazilpt
dc.description.abstractFor the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests. © 2014 Elsevier B.V.en
dc.relation.ispartofMaterials Science and Engineering Cpt_BR
dc.publisherElsevier BVpt_BR
dc.date.issued2014pt_BR
dc.identifier.citationMaterials Science And Engineering C. Elsevier Bv, v. 39, n. 1, p. 359 - 370, 2014.pt_BR
dc.language.isoenpt_BR
dc.description.volume39pt_BR
dc.description.issuenumber1pt_BR
dc.description.firstpage359pt_BR
dc.description.lastpage370pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn9284931pt_BR
dc.identifier.doi10.1016/j.msec.2014.03.016pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84897533679&partnerID=40&md5=2899e915d13b32515040e6eb509158b8pt_BR
dc.date.available2015-06-25T17:50:04Z
dc.date.available2015-11-26T15:28:31Z-
dc.date.accessioned2015-06-25T17:50:04Z
dc.date.accessioned2015-11-26T15:28:31Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:50:04Z (GMT). No. of bitstreams: 1 2-s2.0-84897533679.pdf: 2665737 bytes, checksum: 0acf5ced28529287b385593c9a62d834 (MD5) Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:28:31Z (GMT). No. of bitstreams: 2 2-s2.0-84897533679.pdf: 2665737 bytes, checksum: 0acf5ced28529287b385593c9a62d834 (MD5) 2-s2.0-84897533679.pdf.txt: 62846 bytes, checksum: b809e9d39fddfd4e7924a7257be470a5 (MD5) Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/85759
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85759-
dc.identifier.idScopus2-s2.0-84897533679pt_BR
dc.description.referenceVardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Singh, S.R., Functionalized carbon nanotubes: Biomedical applications (2012) Int. J. Nanomedicine, 7, pp. 5361-5374pt_BR
dc.description.referenceZhou, X., Laroche, F., Lamers, G.E.M., Torraca, V., Voskamp, P., Lu, T., Chu, F., Liu, Z., Ultra-small graphene oxide functionalized with polyethylenimine (PEI) for very efficient gene delivery in cell and zebrafish embryos (2012) Nano Res., 5 (10), pp. 703-709pt_BR
dc.description.referenceMastrobattista, E., Van Der Aa, M.A., Hennink, W.E., Crommelin, D.J., Artificial viruses: A nanotechnological approach to gene delivery (2006) Nat. Rev. Drug Discov., 5 (2), pp. 115-121pt_BR
dc.description.referenceLobo, A.O., Corat, M.A.F., Antunes, E.F., Ramos, S.C., Pacheco-Soares, C., Corat, E.J., Cytocompatibility studies of vertically-aligned multi-walled carbon nanotubes: Raw material and functionalized by oxygen plasma (2012) Mater. Sci. Eng. C, 32 (4), pp. 648-652pt_BR
dc.description.referencePutnam, D., Polymers for gene delivery across length scales (2006) Nat. Mater., 5 (6), pp. 439-451pt_BR
dc.description.referenceRyoo, S.R., Kim, Y.K., Kim, M.H., Min, D.H., Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: Proliferation, focal adhesion, and gene transfection studies (2010) ACS Nano, 4 (11), pp. 6587-6598pt_BR
dc.description.referenceMisra, S.K., Kondaiah, P., Bhattacharya, S., Rao, C.N., Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins (2012) Small, 8 (1), pp. 131-143pt_BR
dc.description.referenceHarrison, B.S., Eberli, D., Lee, S.J., Atala, A., Yoo, J.J., Oxygen producing biomaterials for tissue regeneration (2007) Biomaterials, 28 (31), pp. 4628-4634pt_BR
dc.description.referenceKaya, C., Singh, I., Boccaccini, A.R., Multi-walled Carbon Nanotube-Reinforced Hydroxyapatite Layers on Ti6Al4V Medical Implants by Electrophoretic Deposition (EPD) (2008) Adv. Eng. Mater., 10 (12), pp. 131-138pt_BR
dc.description.referenceHe, S., Song, B., Li, D., Zhu, C., Qi, W., Wen, Y., Wang, L., Fan, C., A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis (2010) Adv. Funct. Mater., 20 (3), pp. 453-459pt_BR
dc.description.referenceJang, H., Kim, Y.K., Kwon, H.M., Yeo, W.S., Kim, D.E., Min, D.H., A Graphene-Based Platform for the Assay by Helicase (2010) Angew. Chem., 49 (33), pp. 5703-5707pt_BR
dc.description.referenceDe La Zerda, A., Zavaleta, C., Keren, S., Vaithilingam, S., Bodapati, S., Liu, Z., Levi, J., Gambhir, S.S., Carbon nanotubes as photoacoustic molecular imaging agents in living mice (2008) Nat. Nanotechnol., 3 (9), pp. 557-562pt_BR
dc.description.referenceLiu, Z., Robinson, J.T., Sun, X., Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs (2008) J. Am. Chem. Soc., 130 (33), pp. 10876-10877pt_BR
dc.description.referenceHu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., Fan, C., Graphene-based antibacterial paper (2010) ACS Nano, 4 (7), pp. 4317-4323pt_BR
dc.description.referencePark, K.H., Chhowalla, M., Iqbal, Z., Sesti, F., Single-walled carbon nanotubes are a new class of ion channel blockers (2003) J. Biol. Chem., 278 (50), pp. 50212-50216pt_BR
dc.description.referenceDe Andrade, L.R., Sandin Brito, A., De Souza Melero, A.M.G., Zanin, H., Jose Ceragioli, H., Baranauskas, V., Silva Cunha, K., Pierre Irazusta, S., Absence of mutagenic and recombinagenic activity of multi-walled carbon nanotubes in the Drosophila wing-spot test and Allium cepa test (2014) Ecotoxicol. Environ. Saf., 99, pp. 92-97pt_BR
dc.description.referenceBottini, M., Bruckner, S., Nika, K., Bottini, N., Bellucci, S., Magrini, A., Bergamaschi, A., Mustelin, T., Multi-walled carbon nanotubes induce T lymphocyte apoptosis (2006) Toxicol. Lett., 160 (2), pp. 121-126pt_BR
dc.description.referenceWorle-Knirsch, J.M., Pulskamp, K., Krug, H.F., Oops they did it again! Carbon nanotubes hoax scientists in viability assays (2006) Nano Lett., 6 (6), pp. 1261-1268pt_BR
dc.description.referenceCasey, A., Davoren, M., Herzog, E., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (1), pp. 34-40pt_BR
dc.description.referenceCasey, A., Herzog, E., Davoren, M., Lyng, F.M., Byrne, H.J., Chambers, G., Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity (2007) Carbon, 45 (7), pp. 1425-1432pt_BR
dc.description.referenceHurt, R.H., Monthioux, M., Kane, A., Toxicology of carbon nanomaterials: Status, trends, and perspectives on the special issue (2006) Carbon, 44 (6), pp. 1028-1033pt_BR
dc.description.referenceMonteiro-Riviere, N.A., Inman, A.O., Challenges for assessing carbon nanomaterial toxicity to the skin (2006) Carbon, 44 (6), pp. 1070-1078pt_BR
dc.description.referenceZhang, L.W., Zeng, L.L., Barron, A.R., Monteiro-Riviere, N.A., Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes (2007) Int. J. Toxicol., 26 (2), pp. 103-113pt_BR
dc.description.referenceIsobe, H., Tanaka, T., Maeda, R., Noiri, E., Solin, N., Yudasaka, M., Iijima, S., Nakamura, E., Preparation, Purification, Characterization, and Cytotoxicity Assessment of Water-soluble, Transition-metal-free Carbon Nanotube Aggregates (2006) Angew. Chem. Int. Ed., 45 (40), pp. 6676-6680pt_BR
dc.description.referenceBhirde, A.A., Patel, S., Sousa, A.A., Patel, V., Molinolo, A.A., Ji, Y.M., Leapman, R.D., Rusling, J.F., Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice (2010) Nanomedicine, 5 (10), pp. 1535-1546pt_BR
dc.description.referenceFoldvari, M., Bagonluri, M., Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues (2008) Nanomedicine, 4 (3), pp. 183-200pt_BR
dc.description.referenceMaynard, A.D., Baron, P.A., Foley, M., Shvedova, A.A., Kisin, E.R., Castranova, V., Exposure to carbon nanotube material: Aerosol release during the handling of unrefined single-walled carbon nanotube material (2004) J. Toxicol. Environ Health A, 67 (1), pp. 87-107pt_BR
dc.description.referenceTejral, G., Panyala, N.R., Havel, J., Carbon nanotubes: Toxicological impact on human health and environment (2009) J. Appl. Biomed., 7 (1), pp. 1-13pt_BR
dc.description.referenceZhang, Y.B., Xu, Y., Li, Z.G., Chen, T., Lantz, S.M., Howard, P.C., Paule, M.G., Ali, S.F., Mechanistic toxicity evaluation of uncoated and PEGylated single-walled carbon nanotubes in neuronal PC12 cells (2011) ACS Nano, 5 (9), pp. 7020-7033pt_BR
dc.description.referencePacurari, M., Yin, X.J., Zhao, J.S., Ding, M., Leonard, S.S., Schwegier-Berry, D., Ducatman, B.S., Vallyathan, V., Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells (2008) Environ. Health Perspect., 116 (9), pp. 1211-1217pt_BR
dc.description.referenceShvedova, A.A., Pietroiusti, A., Fadeel, B., Kagan, V.E., Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress (2012) Toxicol. Appl. Pharmacol., 261 (2), pp. 121-133pt_BR
dc.description.referenceYuan, J., Gao, H., Sui, J., Duan, H., Chen, W.N., Ching, C.B., Cytotoxicity Evaluation of Oxidized Single-Walled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis (2012) Toxicol. Sci., 126 (1), pp. 149-161pt_BR
dc.description.referenceYuan, J., Gao, H., Ching, C.B., Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC-MS/MS proteome analysis (2011) Toxicol. Lett., 207 (3), pp. 213-221pt_BR
dc.description.referenceMurray, A.R., Kisin, E., Leonard, S.S., Young, S.H., Kommineni, C., Kagan, V.E., Castranova, V., Shvedova, A.A., Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes (2009) Toxicology, 257 (3), pp. 161-171pt_BR
dc.description.referenceDing, L.H., Stilwell, J., Zhang, T.T., Elboudwarej, O., Jiang, H.J., Selegue, J.P., Cooke, P.A., Chen, F.Q.F., Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast (2005) Nano Lett., 5 (12), pp. 2448-2464pt_BR
dc.description.referenceYan, L.A., Zhao, F., Li, S.J., Hu, Z.B., Zhao, Y.L., Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes (2011) Nanoscale, 3 (2), pp. 362-382pt_BR
dc.description.referenceYan, X.B., Gu, Y.H., Huang, D., Gan, L., Wu, L.X., Huang, L.H., Chen, Z.D., Zhou, K.C., Binding tendency with oligonucleotides and cell toxicity of cetyltrimethyl ammonium bromide-coated single-walled carbon nanotubes (2011) Trans. Nonferrous Met. Soc., 21 (5), pp. 1085-1091pt_BR
dc.description.referenceChan, W.C.W., Elucidating the Interactions of Nanomaterials with Biological Systems (2010) Nemb 2010: Proceedings of the Asme First Global Congress on Nanoengineering for Medicine and Biology, pp. 111-112pt_BR
dc.description.referenceLam, C.W., James, J.T., McCluskey, R., Hunter, R.L., Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation (2004) Toxicol. Sci., 77 (1), pp. 126-134pt_BR
dc.description.referenceSato, Y., Yokoyama, A., Shibata, K., Akimoto, Y., Ogino, S., Nodasaka, Y., Kohgo, T., Tohji, K., Influence of length on cytotoxicity of multi-walled carbon nanotubesagainst human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo (2005) Mol. Biosyst., 1 (2), pp. 176-182pt_BR
dc.description.referenceMachado, C.M., Schenka, A., Vassallo, J., Tamashiro, W.M., Goncalves, E.M., Genari, S.C., Verinaud, L., Morphological characterization of a human glioma cell line (2005) Cancer Cell Int., 5 (1), p. 13pt_BR
dc.description.referenceSingh, R., Pantarotto, D., McCarthy, D., Chaloin, O., Hoebeke, J., Partidos, C.D., Briand, J.P., Kostarelos, K., Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors (2005) J. Am. Chem. Soc., 127 (12), pp. 4388-4396pt_BR
dc.description.referenceLiu, Y., Wu, D.C., Zhang, W.D., Jiang, X., He, C.B., Chung, T.S., Goh, S.H., Leong, K.W., Polyethylenimine-Grafted Multiwalled Carbon Nanotubes for Secure Noncovalent Immobilization and Efficient Delivery of DNA (2005) Angew. Chem. Int. Ed., 44 (30), pp. 4782-4785pt_BR
dc.description.referenceZangmeister, R.A., Maslar, J.E., Opdahl, A., Tarlov, M.J., Adsorption behavior of DNA-wrapped carbon nanotubes on self-assembled monolayer surfaces (2007) Langmuir, 23 (11), pp. 6252-6256pt_BR
dc.description.referenceTasis, D., Tagmatarchis, N., Bianco, A., Prato, M., Chemistry of carbon nanotubes (2006) Chem. Rev., 106 (3), pp. 1105-1136pt_BR
dc.description.referenceZheng, M., Jagota, A., Semke, E.D., Diner, B.A., McLean, R.S., Lustig, S.R., Richardson, R.E., Tassi, N.G., (2003) Nat. Mater., 2 (5), pp. 338-342pt_BR
dc.description.referenceHollanda, L.M., Lobo, A.O., Lancellotti, M., Berni, E., Corat, E.J., Zanin, H., Graphene and Carbon Nanotube Nanocomposite for Gene Transfection Mater. Sci. Eng. C, , http://dx.doi.org/10.1016/j.msec.2014.03.002pt_BR
dc.description.referenceSanchez-Pomales, G., Santiago-Rodriguez, L., Cabrera, C.R., DNA-functionalized carbon nanotubes for biosensing applications (2009) J. Nanosci. Nanotechnol., 9 (4), pp. 2175-2188pt_BR
dc.description.referenceGhosh, S., Dutta, S., Gomes, E., Carroll, D., D'Agostino, R., Olson, J., Guthold, M., Gmeiner, W.H., Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes (2009) ACS Nano, 3 (9), pp. 2667-2673pt_BR
dc.description.referenceCheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H.X., DNA and carbon nanotubes as medicine (2010) Adv. Drug Deliv. Rev., 62 (6), pp. 633-649pt_BR
dc.description.referenceFirme, C.P., Bandaru, P.R., Toxicity issues in the application of carbon nanotubes to biological systems (2010) Nanomedicine, 6 (2), pp. 245-256pt_BR
dc.description.referenceLundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., Dawson, K.A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts (2008) Proc. Natl. Acad. Sci. U. S. A., 105 (38), pp. 14265-14270pt_BR
dc.description.referenceCedervall, T., Lynch, I., Lindman, S., Berggard, T., Thulin, E., Nilsson, H., Dawson, K.A., Linse, S., Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles (2007) Proc. Natl. Acad. Sci. U. S. A., 104 (7), pp. 2050-2055pt_BR
dc.description.referenceGe, C.C., Du, J.F., Zhao, L.N., Wang, L.M., Liu, Y., Li, D.H., Yang, Y.L., Chen, C.Y., Binding of blood proteins to carbon nanotubes reduces cytotoxicity (2011) Proc. Natl. Acad. Sci. U. S. A., 108 (41), pp. 16968-16973pt_BR
dc.description.referenceNel, A.E., Madler, L., Velegol, D., Xia, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F., Thompson, M., Understanding biophysicochemical interactions at the nano-bio interface (2009) Nat. Mater., 8 (7), pp. 543-557pt_BR
dc.description.referenceShim, M., Kam, N.W.S., Chen, R.J., Li, Y.M., Dai, H.J., Functionalization of carbon nanotubes for biocompatibility and biomolecular recognition (2002) Nano Lett., 2 (4), pp. 285-288pt_BR
dc.description.referenceZhang, L., Zhao, G.C., Wei, X.W., Yang, Z.S., A Nitric Oxide Biosensor Based on Myoglobin Adsorbed on Multi-Walled Carbon Nanotubes (2005) Electroanalysis, 17 (7), pp. 630-634pt_BR
dc.description.referenceFeazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J., Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design (2007) J. Am. Chem. Soc., 129 (27), p. 8438pt_BR
dc.description.referenceLiu, Z., Robinson, J.T., Tabakman, S.M., Yang, K., Dai, H., Carbon materials for drug delivery & cancer therapy, Mater (2011) Today, 14 (78), pp. 316-323pt_BR
dc.description.referenceMachado, C.M., Ikemori, R.Y., Zorzeto, T.Q., Nogueira, A.C., Barbosa, S.D., Savino, W., Schenka, A.A., Boetcher-Luiz, F., Verinaud Characterization of Cells Recovered from the Xenotransplanted Ng97 Human-Derived Glioma Cell Line Subcultured in Long-Term in Vitro A L. (2008) BMC Cancer, 8, p. 291pt_BR
dc.description.referenceFletcher, D.A., Mullins, D., Cell mechanics and the cytoskeleton (2010) Nature, 463 (7280), pp. 485-492pt_BR
dc.description.referenceMachado, C.M.L., Schenka, A., Vassallo, J., Tamashiro, W.M.S.C., Goncalves, E.M., Genari, S.C., Verinaud, L., Morphological characterization of a human glioma cell line (2005) Cancer Cell Int., p. 5pt_BR
dc.description.referenceIzidoro, M.S.J., Varela, J.N., Alves, D.A., Pereira, R.F.C., Brocchi, M., Lancellotti, M., Hollanda, L.M., Effects of Salmonella enteritidis serovar typhimurium Infection in Adenocarcinomic Human Alveolar Basal Epithelial Cells A549 in vitro: Bacteria Induce Apoptosis in Adenocarcinomic Cell (2012) J. Bacteriol. Parasitol., 3 (9)pt_BR
dc.description.referenceMosmann, T., Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays (1983) J. Immunol. Methods, 65 (12), pp. 55-63pt_BR
dc.description.referenceMachado, D., Shishido, S.M., Queiroz, K.C., Oliveira, D.N., Faria, A.L., Catharino, R.R., Spek, C.A., Ferreira, C.V., Irradiated Riboflavin Diminishes the Aggressiveness of Melanoma in Vitro and in Vivo (2013) PLoS One, 8 (1), p. 54269pt_BR
dc.description.referenceEllis, D.I., Dunn, W.B., Griffin, J.L., Allwood, J.W., Goodacre, R., Metabolic fingerprinting as a diagnostic tool (2007) Pharmacogenomics, 8 (9), pp. 1243-1266pt_BR
dc.description.referenceAntunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first-and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44, pp. 2202-22011pt_BR
dc.description.referenceZanin, H., Teofilo, R.F., Peterlevitz, A.C., Oliveira, U., De Paiva, J.C., Ceragioli, H.J., Baranauskas, V., Diamond cylindrical anodes for electrochemical treatment of persistent compounds in aqueous solution (2013) J. Appl. Electrochem., 43, pp. 323-330pt_BR
dc.description.referenceSilva, T.A., Zanin, H., Saito, E., Medeiros, R.A., Vicentini, F.C., Corat, E.J., Fatibello-Filho, O., Electrochemical behaviour of vertically aligned carbon nanotubes and graphene oxide nanocomposite as electrode material (2014) Electrochimica Acta, 119, pp. 114-119pt_BR
dc.description.referenceZanin, H., May, P.W., Lobo, A.O., Saito, E., Machado, J.P.B., Martins, G., Trava-Airoldi, V.J., Corat, E.J., Effect of Multi-Walled Carbon Nanotubes Incorporation on the Structure, Optical and Electrochemical Properties of Diamond-Like Carbon Thin Films (2014) J. Electrochem. Soc., 161 (5), pp. 290-H295pt_BR
dc.description.referenceZhang, D.W., Yi, C.Q., Zhang, J.C., Chen, Y., Yao, X.S., Yang, M.S., The effects of carbon nanotubes on the proliferation and differentiation of primary osteoblasts (2007) Nanotechnology, 18 (47)pt_BR
dc.description.referenceZhang, L., Xia, J., Zhao, Q., Liu, L., Zhang, Z., Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs (2010) Small, 6 (4), pp. 537-544pt_BR
dc.description.referenceZhang, L., Lu, Z., Zhao, Q., Huang, J., Shen, H., Zhang, Z., Enhanced Chemotherapy Efficacy by Sequential Delivery of siRNA and Anticancer Drugs Using PEI-Grafted Graphene Oxide (2011) Small, 7 (4), pp. 460-464pt_BR
dc.description.referenceGrinet, M.A.V.M., Zanin, H., Granato, A.E.C., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds (2014) J. Mater. Chem. B, 2 (9), pp. 1196-1204pt_BR
dc.description.referenceZanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications (2013) J. Mater. Chem. B, 1 (38), pp. 4947-4955pt_BR
dc.description.referenceDe Vos, R.C.H., Tikunov, Y., Bovy, A.G., Hall, R.D., (2008) Expression of Multidisciplinary Flavour Science, pp. 573-580pt_BR
dc.description.referenceDe Oliveira, D.N., De Bona Sartor, S., Ferreira, M.S., Catharino, R.R., Cosmetic Analysis Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) (2013) Materials, 6 (3), pp. 1000-1010pt_BR
dc.description.referenceDe Oliveira, D.N., Siqueira, M., Sartor, S., Catharino, R., Direct analysis of lipsticks by Sorptive tape-like extraction laser desorption/ionization mass spectrometry imaging (2013) Intern J. Cosm Science, 35 (5), pp. 467-471pt_BR
dc.description.referenceDunn, W.B., Bailey, N.J., Johnson, H.E., Measuring the metabolome: Current analytical technologies (2005) Analyst, 130 (5), pp. 606-625pt_BR
dc.description.referenceAbdelnur, P.V., (2011) Circular Técnica 10, Embrapapt_BR
dc.description.referenceTan, B., O'Dell, D.K., Yu, Y.W., Monn, M.F., Hughes, H.V., Burstein, S., Walker, J.M., Identification of endogenous acyl amino acids based on a targeted lipidomics approach (2010) J. Lipid Res., 51 (1), pp. 112-119pt_BR
dc.description.referenceLin, H., Bu, Q., Cen, X., Zhao, Y.-L., Current Methods and Research Progress in Nanomaterials Risk Assessment (2012) Curr. Drug Metab., 13 (4), pp. 354-363pt_BR
dc.description.referenceLei, R., Wu, C., Yang, B., Ma, H., Shi, C., Wang, Q., Wang, Q., Liao, M., Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: A rapid in vivo screening method for nanotoxicity (2008) Toxicol. Appl. Pharmacol., 232 (2), pp. 292-301pt_BR
dc.description.referenceHadrup, N., Lam, H.R., Loeschner, K., Mortensen, A., Larsen, E.H., Frandsen, H., Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics (2012) J. Appl. Toxicol., 32 (11), pp. 929-933pt_BR
dc.description.referenceFeng, J., Li, J., Wu, H., Chen, Z., Metabolic responses of HeLa cells to silica nanoparticles by NMR-based metabolomic analyses (2013) Metabolomics, 9 (4), pp. 874-886pt_BR
dc.description.referenceBu, Q., Yan, G., Deng, P., Peng, F., Lin, H., Xu, Y., Cao, Z., Zhao, Y.-L., NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration (2010) Nanotechnology, 21 (12)pt_BR
dc.description.referenceLin, B., Zhang, H., Lin, Z., Fang, Y., Tian, L., Yang, H., Yan, J., Xi, Z., Studies of single-walled carbon nanotubes-induced hepatotoxicity by NMR-based metabonomics of rat blood plasma and liver extracts (2013) Nanoscale Res. Lett., p. 8pt_BR
dc.description.referenceSawamura, Y., Diserens, A.C., De Tribolet, N., In vitro prostaglandin E2 production by glioblastoma cells and its effect on interleukin-2 activation of oncolytic lymphocytes (1990) J. Neuro Oncol., 9 (2), pp. 125-130pt_BR
dc.description.referenceGarcia, M.C., Ward, G., Ma, Y.C., Salem, Jr.N., Kim, H.Y., Effect of docosahexaenoic acid on the synthesis of phosphatidylserine in rat brain in microsomes and C6 glioma cells, Doxorubicin-sensitive and -resistant Rat Glioblastoma Cells (1998) J. Neurochem., 70 (1), pp. 24-30pt_BR
dc.description.referenceMartin, C.A., Almeida, A.A., Ruiz, R.M., Visentainer, J.E.L., Matshushita, M., Souza, N.E., Visentainer, J.V., Ácidos graxos poliinsaturados ômega-3 e ômega-6: Importância e ocorrência em alimentos (2006) Rev. Nutr. Campinas, 19 (6), pp. 761-770pt_BR
dc.description.referenceVrignaud, P., Montaudon, D., Londos-Gagliardi, D., Robert, J., Fatty acid composition transport and metabolism in doxorubicin-sensitive and -resistant rat glioblastoma cells (1986) Cancer Res., 46 (7), pp. 3258-3261pt_BR
dc.description.referenceAlberghina, M., Fosfolipasi A2: Nuove lezioni dallo studio delle cellule endoteliali (2010) Bol. Accad. Gioenia Sci. Nat., 43 (371), pp. 1-14pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84897533679.pdf2.6 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.