Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleTuning Resistive Switching On Single-pulse Doped Multilayer Memristorspt_BR
dc.contributor.authorSiles P.F.pt_BR
dc.contributor.authorDe Pauli M.pt_BR
dc.contributor.authorBof Bufon C.C.pt_BR
dc.contributor.authorFerreira S.O.pt_BR
dc.contributor.authorBettini J.pt_BR
dc.contributor.authorSchmidt O.G.pt_BR
dc.contributor.authorMalachias A.pt_BR
unicamp.authorDe Pauli, M., Laboratório Nacional de Luz Síncrotron, LNLS, CP 6192, Campinas, Brazil, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, SP, Brazilpt_BR, P.F., Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany, Material Systems for Nanoelectronics, TU Chemnitz, Reichenhainerstraße 70, 09107 Chemnitz, Germany, Laboratório Nacional de Luz Síncrotron, LNLS, CP 6192, Campinas, Brazilpt Bufon, C.C., Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany, Laboratório Nacional de Nanotecnologia, LNNano, CP 6192, Campinas, Brazilpt, S.O., Laboratório Nacional de Luz Síncrotron, LNLS, CP 6192, Campinas, Brazil, Departamento de Física, Universidade Federal de Viçosa, Minas Gerais, Viçosa, Brazilpt, J., Laboratório Nacional de Luz Síncrotron, LNLS, CP 6192, Campinas, Brazilpt, O.G., Institute for Integrative Nanosciences, IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany, Material Systems for Nanoelectronics, TU Chemnitz, Reichenhainerstraße 70, 09107 Chemnitz, Germanypt, A., Laboratório Nacional de Luz Síncrotron, LNLS, CP 6192, Campinas, Brazil, Departamento de Física, Universidade Federal de Minas Gerais, MG, Belo Horizonte, Brazilpt
dc.description.abstractShort-period multilayers containing ultrathin atomic layers of Al embedded in titanium dioxide (TiO2) film - here called single-pulse doped multilayers - are fabricated by atomic layer deposition (ALD) growth methods. The approach explored here is to use Al atoms through single-pulsed deposition to locally modify the chemical environment of TiO2 films, establishing a chemical control over the resistive switching properties of metal/oxide/metal devices. We show that this simple methodology can be employed to produce well-defined and controlled electrical characteristics on oxide thin films without compound segregation. The increase in volume of the embedded Al2O3 plays a crucial role in tuning the conductance of devices, as well as the switching bias. The stacking of these oxide compounds and their use in electrical devices is investigated with respect to possible crystalline phases and local compound formation via chemical recombination. It is shown that our method can be used to produce compounds that cannot be synthesized a priori by direct ALD growth procedures but are of interest due to specific properties such as thermal or chemical stability, electrical resistivity or electric field polarization possibilities. The monolayer doping discussed here impacts considerably on the broadening of the spectrum of performance and technological applications of ALD-based memristors, allowing for additional degrees of freedom in the engineering of oxide devices. © 2013 IOP Publishing Ltd.en
dc.identifier.citationNanotechnology. , v. 24, n. 3, p. - , 2013.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-25T19:17:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2013en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:15:50Z (GMT). No. of bitstreams: 0 Previous issue date: 2013en
dc.description.referenceLevi, B.G., (2007) Phys. Today, 60 (6), p. 23. , 10.1063/1.2754590 0031-9228pt_BR
dc.description.referenceEckstein, J.N., Oxide interfaces: Watch out for the lack of oxygen (2007) Nature Materials, 6 (7), pp. 473-474. , DOI 10.1038/nmat1944, PII NMAT1944pt_BR
dc.description.referenceSmadici, S., Lee, J.C.T., Wang, S., Abbamonte, P., Logvenov, G., Gozar, A., Cavellin, C.D., Bozovic, I., (2009) Phys. Rev. Lett., 102 (10). , 10.1103/PhysRevLett.102.107004 0031-9007 107004pt_BR
dc.description.referenceSchooley, J.F., Hosler, W.R., Cohen, M.L., (1964) Phys. Rev. Lett., 12 (17), p. 474. , 10.1103/PhysRevLett.12.474 0031-9007pt_BR
dc.description.referenceKoida, T., Lippmaa, M., Fukumura, T., Itaka, K., Matsumoto, Y., Kawasaki, M., Koinuma, H., (2002) Phys. Rev., 66 (14). , 10.1103/PhysRevB.66.144418 0163-1829 B 144418pt_BR
dc.description.referenceOgawa, N., Satoh, T., Ogimoto, Y., Miyano, K., (2008) Phys. Rev., 78 (21). , 10.1103/PhysRevB.78.212409 1098-0121 B 212409pt_BR
dc.description.referenceNanda, B.R.K., Satpathy, S., (2008) Phys. Rev. Lett., 101 (12). , 10.1103/PhysRevLett.101.127201 0031-9007 127201pt_BR
dc.description.referenceAhn, C.H., Tybell, T., Antognazza, L., Char, K., Hammond, R.H., Beasley, M.R., Fischer, O., Triscone, J.-M., Local, nonvolatile electronic writing of epitaxial Pb(Zr 0.52Ti0.48)O3/SrRuO=3 heterostructures (1997) Science, 276 (5315), pp. 1100-1103. , DOI 10.1126/science.276.5315.1100pt_BR
dc.description.referenceCohen Ronald, E., Origin of ferroelectricity in perovskite oxides (1992) Nature, 358 (6382), pp. 136-138. , DOI 10.1038/358136a0pt_BR
dc.description.referenceHaeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Schlom, D.G., Room-temperature ferroelectricity in strained SrTiO3 (2004) Nature, 430 (7001), pp. 758-761. , DOI 10.1038/nature02773pt_BR
dc.description.referenceWarusawithana, M.P., (2009) Science, 324 (5925), p. 367. , 10.1126/science.1169678 0036-8075pt_BR
dc.description.referenceCheng, G., (2011) Nature Nanotechnol., 6 (6), p. 343. , 10.1038/nnano.2011.56 1748-3387pt_BR
dc.description.referenceYang, J.J., Pickett, M.D., Li, X., Ohlberg, D.A.A., Stewart, D.R., Williams, R.S., (2008) Nature Nanotechnol., 3 (7), p. 429. , 10.1038/nnano.2008.160 1748-3387pt_BR
dc.description.referenceYang, J.J., Miao, F., Pickett, M.D., Ohlberg, D.A.A., Stewart, D.R., Lau, C.N., Williams, R.S., (2009) Nanotechnology, 20 (21). , 10.1088/0957-4484/20/21/215201 0957-4484 215201pt_BR
dc.description.referenceKwon, D.H., (2010) Nature Nanotechnol., 5 (2), p. 148. , 10.1038/nnano.2009.456 1748-3387pt_BR
dc.description.referenceSawa, A., Resistive switching in transition metal oxides (2008) Materials Today, 11 (6), pp. 28-36. , DOI 10.1016/S1369-7021(08)70119-6, PII S1369702108701196pt_BR
dc.description.referenceSiles, P.F., Archanjo, B.S., Baptista, D.L., Pimentel, V.L., Yang, J.J., Neves, B.R.A., Medeiros-Ribeiro, G., (2011) J. Appl. Phys., 110 (2). , 10.1063/1.3609065 0021-8979 024511pt_BR
dc.description.referenceXue, D., Betzler, K., Hesse, H., (2000) J. Phys.: Condens. Matter, 12 (13), p. 3113. , 10.1088/0953-8984/12/13/319 0953-8984pt_BR
dc.description.referenceYeo, Y.C., King, T.J., Hu, C., (2002) Appl. Phys. Lett., 81 (11), p. 2091. , 10.1063/1.1506941 0003-6951pt_BR
dc.description.referenceTakemura, K., Sakuma, T., Miyasaka, Y., (1994) Appl. Phys. Lett., 64 (22), p. 2967. , 10.1063/1.111396 0003-6951pt_BR
dc.description.referenceTorrezan, A.C., Strachan, J.P., Medeiros-Ribeiro, G., Williams, R.S., (2011) Nanotechnology, 22 (48). , 10.1088/0957-4484/22/48/485203 0957-4484 485203pt_BR
dc.description.referenceHur, J., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M., Chung, U., (2012) Nanotechnology, 23 (22). , 10.1088/0957-4484/23/22/225702 0957-4484 225702pt_BR
dc.description.referenceYoon, K.J., Lee, M.H., Kim, G.H., Song, S.J., Seok, J.Y., Han, S., Yoon, J.H., Hwang, C.S., (2012) Nanotechnology, 23 (18). , 10.1088/0957-4484/23/18/185202 0957-4484 185202pt_BR
dc.description.referenceZhang, L., Jiang, H.C., Liu, C., Dong, J.W., Chow, P., Annealing of Al2O3 thin films prepared by atomic layer deposition (2007) Journal of Physics D: Applied Physics, 40 (12), pp. 3707-3713. , DOI 10.1088/0022-3727/40/12/025, PII S0022372707450616, 025pt_BR
dc.description.referenceLee, S.W., (2011) Chem. Mater., 23 (8), p. 2227. , 10.1021/cm2002572 0897-4756pt_BR
dc.description.referenceKukli, K., Ritala, M., Pore, V., Leskelä, M., Sajavaara, T., Hegde, R.I., Gilmer, D.C., Aspinall, H.C., (2006) Chem. Vapor Depos., 12 (2-3), p. 158. , 10.1002/cvde.200506388 0948-1907pt_BR
dc.description.referenceNg, C.J.W., Gao, H., Tan, T.T.Y., (2008) Nanotechnology, 19 (44). , 10.1088/0957-4484/19/44/445604 0957-4484 445604pt_BR
dc.description.referenceKim, S.K., Hwang, C.S., (2004) J. Appl. Phys., 96 (4), p. 2323. , 10.1063/1.1769090 0021-8979pt_BR
dc.description.referenceKundu, M., Miyata, N., Ichikawa, M., (2001) Appl. Phys. Lett., 78 (11), p. 1517. , 10.1063/1.1355294 0003-6951pt_BR
dc.description.referenceGroner, M.D., Elam, J.W., Fabreguette, F.H., George, S.M., Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates (2002) Thin Solid Films, 413 (1-2), pp. 186-197. , DOI 10.1016/S0040-6090(02)00438-8, PII S0040609002004388pt_BR
dc.description.referenceDiebold, U., (2003) Surf. Sci. Rep., 48 (5-8), p. 53. , 10.1016/S0167-5729(02)00100-0 0167-5729pt_BR
dc.description.referenceStamate, M.D., (2000) Thin Solid Films, 372 (1-2), p. 246. , 10.1016/S0040-6090(00)01027-0 0040-6090pt_BR
dc.description.referencePang, C.L., Bikondoa, O., Humphrey, D.S., Papageorgiou, A.C., Cabailh, G., Ithnin, R., Chen, Q., Thornton, G., Tailored TiO2(110) surfaces and their reactivity (2006) Nanotechnology, 17 (21), pp. 5397-5405. , DOI 10.1088/0957-4484/17/21/019, PII S0957448406285362, 019pt_BR
dc.description.referenceZhao, Z., Li, Z., Zou, Z., (2010) J. Phys.: Condens. Matter, 22 (17). , 10.1088/0953-8984/22/17/175008 0953-8984 175008pt_BR
dc.description.referenceSimmons, J.G., (1963) J. Appl. Phys., 34 (9), p. 2581. , 10.1063/1.1729774 0021-8979pt_BR
dc.description.referenceHorowitz, G., Fichou, D., Peng, X.D., Delannoy, P., (1990) J. Phys. France, 51 (13), p. 1489. , 10.1051/jphys:0199000510130148900 0302-0738pt_BR
dc.description.referenceDelannoy, P., (1981) Mater. Sci., 7, pp. 13-21pt_BR
dc.description.referenceJogi, I., Kukli, K., Kemell, M., Ritala, M., Leskela, M., Electrical characterization of Alx Tiy Oz mixtures and Al2 O3 -Ti O2 - Al2 O3 nanolaminates (2007) Journal of Applied Physics, 102 (11), p. 114114. , DOI 10.1063/1.2822460pt_BR
dc.description.referenceUnno, H., Sato, Y., Toh, S., Yoshinaga, N., Matsumura, S., (2010) J. Electron Microsc., 59 (S1), p. 107. , 10.1093/jmicro/dfq037 0022-0744pt_BR
dc.description.referenceKuo, D.H., Tzeng, K.H., (2004) Thin Solid Films, 460 (1-2), p. 327. , 10.1016/j.tsf.2004.02.026 0040-6090pt_BR
dc.description.referenceParratt, L.G., (1954) Phys. Rev., 95 (2), p. 359. , 10.1103/PhysRev.95.359 0031-899Xpt_BR
dc.description.referenceStrukov, D.B., Williams, R.S., (2009) Appl. Phys., 94 (3), p. 515. , 10.1007/s00339-008-4975-3 0947-8396 Apt_BR
dc.description.referenceYang, J.J., Kobayashi, N.P., Strachan, J.P., Zhang, M.X., Ohlberg, D.A.A., Pickett, M.D., Li, Z., Williams, R.S., (2011) Chem. Mater., 23 (2), p. 123. , 10.1021/cm1020959 0897-4756pt_BR
dc.description.referenceEllingham, H.J.T., (1944) J. Soc. Chem. Indust., 63 (5), p. 125. , 10.1002/jctb.5000630501 0368-4075pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.